
Storage Systems

Main Points

• File systems
– Useful abstractions on top of physical devices

• Storage hardware characteristics
– Disks and flash memory

• File system usage patterns

File Systems

• Abstraction on top of persistent storage
– Magnetic disk
– Flash memory (e.g., USB thumb drive)

• Devices provide
– Storage that (usually) survives across machine crashes
– Block level (random) access
– Large capacity at low cost
– Relatively slow performance

• Magnetic disk read takes 10-20M processor instructions

File System as Illusionist:
Hide Limitations of Physical Storage

• Persistence of data stored in file system:
– Even if crash happens during an update
– Even if disk block becomes corrupted
– Even if flash memory wears out

• Naming:
– Named data instead of disk block numbers
– Directories instead of flat storage
– Byte addressable data even though devices are block-

oriented
• Performance:
– Cached data
– Data placement and data structure organization

• Controlled access to shared data

File System Abstraction
• File system
– Persistent, named data
– Hierarchical organization (directories, subdirectories)
– Access control on data

• File: named collection of data
– Linear sequence of bytes (or a set of sequences)
– Read/write or memory mapped

• Crash and storage error tolerance
– Operating system crashes (and disk errors) leave file

system in a valid state
• Performance
– Achieve close to the hardware limit in the average case

Storage Devices
• Magnetic disks
– Storage that rarely becomes corrupted
– Large capacity at low cost
– Block level random access
– Slow performance for random access
– Better performance for streaming access

• Flash memory
– Storage that rarely becomes corrupted
– Capacity at intermediate cost (50x disk)
– Block level random access
– Good performance for reads; worse for random writes
– Very low power

Magnetic Disk

Disk Tracks
• ~ 1 micron wide
– Wavelength of light is ~ 0.5 micron
– Resolution of human eye: 50 microns
– 100K tracks on a typical 2.5” disk

• Separated by unused guard regions
– Reduces likelihood neighboring tracks are corrupted during

writes (still a small non-zero chance)
• Track length varies across disk
– Outside: More sectors per track, higher bandwidth
– Disk is organized into regions of tracks with same # of

sectors/track
– Only outer half of radius is used

• Most of the disk area in the outer regions of the disk

Sectors
Sectors contain sophisticated error correcting codes
– Disk head magnet has a field wider than track
– Hide corruptions due to neighboring track writes

• Sector sparing
– Remap bad sectors transparently to spare sectors on

the same surface
• Slip sparing
– Remap all sectors (when there is a bad sector) to

preserve sequential behavior
• Track skewing
– Sector numbers offset from one track to the next, to

allow for disk head movement for sequential ops

Disk Performance

Disk Latency =

Seek Time + Rotation Time + Transfer Time

Seek Time: time to move disk arm over track (1-20ms)

Fine-grained position adjustment necessary for head to “settle”

Head switch time ~ track switch time (on modern disks)

Rotation Time: time to wait for disk to rotate under disk head

Disk rotation: 4 – 15ms (depending on price of disk)

On average, only need to wait half a rotation

Transfer Time: time to transfer data onto/off of disk

Disk head transfer rate: 50-100MB/s (5-10 usec/sector)

Host transfer rate dependent on I/O connector (USB, SATA, …)

Toshiba Disk (2008)

Question

• How long to complete 500 random disk reads,
in FIFO order?
– Seek: average 10.5 msec
– Rotation: average 4.15 msec
– Transfer: 5-10 usec

• 500 * (10.5 + 4.15 + 0.01)/1000 = 7.3 seconds

Question

• How long to complete 500 sequential disk reads?
– Seek Time: 10.5 ms (to reach first sector)
– Rotation Time: 4.15 ms (to reach first sector)
– Transfer Time: (outer track)

500 sectors * 512 bytes / 128MB/sec = 2ms

Total: 10.5 + 4.15 + 2 = 16.7 ms
Might need an extra head or track switch (+1ms)
Track buffer may allow some sectors to be read off disk

out of order (-2ms)

Question

• How large a transfer is needed to achieve 80%
of the max disk transfer rate?
Assume x rotations are needed, then solve for x:
0.8 (10.5 ms + (1ms + 8.5ms) x) = 8.5ms x

Total: x = 9.1 rotations, 9.8MB

Disk Scheduling

• FIFO
– Schedule disk operations in order they arrive
– Downsides?

Disk Scheduling

• Shortest seek time first
– Not optimal!
• Suppose cluster of requests at far end of disk

– Downsides?

Disk Scheduling

• SCAN: move disk
arm in one direction,
until all requests
satisfied, then
reverse direction

• Also called “elevator
scheduling”

Disk Scheduling

• CSCAN: move disk
arm in one
direction, until all
requests satisfied,
then start again
from farthest
request

Disk Scheduling

• R-CSCAN: CSCAN
but take into
account that short
track switch is <
rotational delay

Question

• How long to complete 500 random disk reads,
in any order?
– Disk seek: 1ms (most will be short)

– Rotation: 4.15ms

– Transfer: 5-10usec

• Total: 500 * (1 + 4.15 + 0.01) = 2.2 seconds
– Would be a bit shorter with R-CSCAN

– vs. 7.3 seconds if FIFO order

Question

• How long to read all of the bytes off of a disk?
– Disk capacity: 320GB
– Disk bandwidth: 54-128MB/s

• Transfer time =
Disk capacity / average disk bandwidth
~ 3500 seconds (1 hour)

Flash Memory

Flash Memory

• Writes must be to “clean” cells; no update in
place
– Large block erasure required before write
– Erasure block: 128 – 512 KB
– Erasure time: Several milliseconds

• Write/read page (2-4KB)
– 50-100 usec

Flash Drive (2011)

Question

• Why are random writes so slow?
– Random write: 2000/sec
– Random read: 38500/sec

Flash Translation Layer

• Flash device firmware maps logical page # to a
physical location
– Garbage collect erasure block by copying live

pages to new location, then erase
• More efficient if blocks stored at same time are deleted

at same time (e.g., keep blocks of a file together)
– Wear-levelling: only write each physical page a

limited number of times
– Remap pages that no longer work (sector sparing)

• Transparent to the device user

File System – Flash

• How does Flash device know which blocks are
live?
– Live blocks must be remapped to a new location

during erasure
• TRIM command
– File system tells device when blocks are no longer

in use

File System Workload

• File sizes
– Are most files small or large?
– Which accounts for more total storage: small or

large files?

File System Workload

• File sizes
– Are most files small or large?
• SMALL

– Which accounts for more total storage: small or
large files?
• LARGE

File System Workload

• File access
– Are most accesses to small or large files?
– Which accounts for more total I/O bytes: small or

large files?

File System Workload

• File access
– Are most accesses to small or large files?
• SMALL

– Which accounts for more total I/O bytes: small or
large files?
• LARGE

File System Workload

• How are files used?
– Most files are read/written sequentially
– Some files are read/written randomly
• Ex: database files, swap files

– Some files have a pre-defined size at creation
– Some files start small and grow over time
• Ex: program stdout, system logs

File System Design
• For small files:
– Small blocks for storage efficiency
– Concurrent ops more efficient than sequential
– Files used together should be stored together

• For large files:
– Storage efficient (large blocks)
– Contiguous allocation for sequential access
– Efficient lookup for random access

• May not know at file creation
– Whether file will become small or large
– Whether file is persistent or temporary
– Whether file will be used sequentially or randomly

File System Abstraction
• Directory
– Group of named files or subdirectories
– Mapping from file name to file metadata location

• Path
– String that uniquely identifies file or directory
– Ex: /cse/www/education/courses/cse451/12au

• Links
– Hard link: link from name to metadata location
– Soft link: link from name to alternate name

• Mount
– Mapping from name in one file system to root of another

UNIX File System API
• create, link, unlink, createdir, rmdir
– Create file, link to file, remove link
– Create directory, remove directory

• open, close, read, write, seek
– Open/close a file for reading/writing
– Seek resets current position

• fsync
– File modifications can be cached
– fsync forces modifications to disk (like a memory

barrier)

File System Interface

• UNIX file open is a Swiss Army knife:
– Open the file, return file descriptor
– Options:
• if file doesn’t exist, return an error
• If file doesn’t exist, create file and open it
• If file does exist, return an error
• If file does exist, open file
• If file exists but isn’t empty, nix it then open
• If file exists but isn’t empty, return an error
• …

Interface Design Question

• Why not separate syscalls for
open/create/exists?
– Would be more modular!

if (!exists(name))
create(name); // can create fail?

fd = open(name); // does the file exist?

